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Extensions from the representations of the Lorentz group to include local 
nonlinear diagonal transformations is sufficient to generate, via the covariant 
derivative, the interaction of minimal coupling. These diagonal realizations are 
characterized by six functions ~, which must satisfy a system of transformation 
equations. Inequivalent categories of solutions for the q,, give rise to different 
electromagnetic fields. The Dirac monopolc and Coulomb potentials follow 
directly from two different categories of these nonlinear realizations. Within this 
theory, charge becomes simply the nonlinear counterpart of intrinsic spin for a 
particular nonlinear realization of the Lorentz group. Charge is thus placed on 
equal footing with intrinsic spin in the sense that both phenomena can be 
described as consequences of our space-time symmetry. Other solutions for the 
six q,, exist, including a spinor. We briefly discuss the possibility that with these 
other solutions, these realizations could represent some other basic properties of 
elementary particles. 

1. I N T R O D U C T I O N  

A primary motivation for considering nonlinear realizations of groups 
is that, like Yang-Mills gauge groups, they are generally local in nature and 
consequently give rise to interactions introduced through covariant deriva- 
tives. 2 Although several varieties of nonlinear realizations of the Poincar+ 

I Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981. 
2See Weinberg (1968). In addition, some of the other pioneering articles on this subject are 
Coleman et al. (1969), Callan et aI. (1969), and Joseph and Solomon (1970). See also Salam 
and Strathdee (1969). A recent discussion for noncompact groups has been given by Julia and 
Luciarti ([980). 
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766 D~ton  

group, or its subgroups, have been published (Poincar6, 1896~; Hind, 1971, 
1972; Hopkinson and Reya, 1972; Dalton 1978; Philips and Wigner, 1968: 
Melvin, 1962, 1963; Takabayasi, 1966; Dalton, 1979), few significant appli- 
cations of the latter to the structure, or interactions of elementary particles 
have been found. Nevertheless, the donunating role in physical applications 
already played by the space-time symmetries, combined with the fact that 
nonlinear realizations can generate interactions, is strong motivation for 
further study on this subject. 

Last year (1980), I derived (Dalton, 1980) the classical Lorentz force 
equations from the covariant acceleration equations associated with nonlin- 
ear realizations of the Lorentz group acting on the four-velocities of 
particles. In a more recent extension (Dalton, to be published) of this work, 
a set of solutions have been found which are characterized by six functions 
~i that must satisfy a set of nonlinear transformation equations. This work is 
all in the context of classical mechanics. 

In the study presented here, I consider nonlinear realizations of the 
Lorentz group as a transformation group acting on the wave functions 
and potentials A,. These realizations are restricted to a simple diagonal 
nonlinear extension of conventional representations. These realizations are 
characterized by six functions ~, that must satisfy the same particular 
transformation equations arrived at in the classical mechanics study men- 
tioned above. In the quantum mechanical context these six functions have a 
simple interpretation. They are the diagonal components for the generators 
representing the transformation. We show that the local nature of these 
transformations generate, via the covariant derivative, the interaction poten- 
tial of minimal coupling. Different solutions of the transformation equa- 
tions give rise to different potentials. For two different solutions we obtain 
the magnetic monopole and Coulomb potentials. Both solutions are derived 
without the use of Maxwell's equations. 

Within the context of a Lagrangian field theory, we show that the 
angular momentum generated by the linear and nonlinear parts are sep- 
arately conserved if the Lagrangian represents a closed system (that is, if we 
include both + and the field F.., in the Lagrangian). Since there is exact 
consistency between the observed angular momentum conservation and that 
described with linear realizations (representations), this key development 
removes a major obstacle in physical applications of these nonlinear realiza- 
tions of the Lorentz group. 

In Appendix A we outline a derivation for the commutator relation for 
arbitrary (linear or nonlinear) transformations and discuss the forms ap- 

3In this work the korentz force equations for a magnetic monopole field were integrated to 
obtain first integral angular m o m e n t u m  expressions that involved, in addition to the usual 
orbital term, a nonlinear term; representing in fact a nonlinear realization of 0(3). 
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propriate to the study here. A derivation of the covariant derivative, (that is, 
how the potential must transform) is given in Appendix B. The reader not 
familiar with nonlinear realizations is advised to first read, or work through, 
these two appendices. In Section 2 we discuss the diagonal nonlinear 
realizations and certain features related to the electromagnetic field. The 
conservation theorems are discussed in Section 3. We describe the equations 
in a convenient vector basis in Section 4. Section 5 is dedicated to a 
derivation of the monopole potential from the nonlinear transformation 
equations for the SU(2) subgroup. The particular realization that gives rise 
to the Coulomb potential is discussed in Section 6. 

The development in this paper is in the context of classical quantum 
mechanics and field theory. However, most of the results will not differ in a 
quantum field theory development. 

2. DIAGONAL REALIZATIONS AND COVARIANT 
DERIVATIVES 

The symmetry group considered here is the six-parameter homogeneous 
Lorentz group ]actually SL( 2 ,  C)  the twofold covering group] under which a 
set of coordinates x= -{x~ , [ /~= l -4}  of a point in Minkowski space is 

t transformed to a set of coordinates x ' - -  {x~,} by the usual linear (four-vec- 
tor) transformation. The Pauli metric notation is used with x 4 = ict together 
with the convention of summing over repeated indices. The symbols a, r ,  ~, 
are used for sets of six group parameters, a =  {c~i[i = 1 - 6 } .  We are consid- 
ering a transformation group on a space of N-dimensional complex func- 
tions +, 4, r =  (~'l, +2 . . . .  @N) (i.e., the wave function or field operator). The 
particular infinitesimal transformations on ~ considered here are restricted 
to a linear part, which generates the intrinsic spin, plus a diagonal nonlinear 
part; the combination is indicated as follows: 

~b'(x') = ~b(x)+ a , ( ~ , l -  t i ) + ( x  ) (1) 

where 1 is the N • N unit matrix and the t~ generate an N • N matrix 
representation. The six functions ~,, i =  1,6, introduced in (1) are not inert 
under the group action and are in general space-time dependent so that 
0~,q), 4 :0  where 0~, = ~/Ox~.  From Appendix A we see that the commutator 
relations for the above transformation of ~b reduce to the following equa- 
tions: 

( S/pj ) -- ( Sjq), ) = C,,k4) k (2) 

[ t,, tj] =-- tit j -- t i t  i = Cijkt k (3) 
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Here, the C~j k are the group structure constants and (6,q~j) is defined (see 
Appendix A) in the infinitesimal transformation of ~j, that is, 

= (4) 

In addition to (2) and (3) which represent commutator relations for the 
transformation on +, the following commutator relations for the transfor- 
mation on the q~, must also be satisfied: 

= C, jet e' k) (5)  

These equations (5), may, or may not, represent extra conditions [that is, in 
addition to (2)]. For instance, if the terms (8,q,k) and (6,(81q~k)) are 
functions of c-number variables which themselves satisfy the commutator  
relations, then (5) will automatically be satisfied. On the other hand, if the 
q~k themselves are taken to be the basic variables, then the equations in (5) 
must be solved simultaneously with (2). We point out that solutions of (5) 
can be found which will not satisfy (2). For instance, suppose we consider 
the solution (6,4~j)= C, jkq~k for a self-representation. If we use this solution 
of (5) in (2) together with C,j k = - Cj~ k, we obtain 2 = 1, a contradiction. On 
the other hand, consider an arbitrary symmetric function S,j (S,j = Sj,). The 

= + ~C, j k~ k will satisfy (2) but the equations in (5) can be form (6iq~j) Sij 1 
solved for only certain choices of functions S u. It should be noted here that 
all of the nonlinear realizations studied in Dalton (1979) involved the 

I antisymmetric term ~_ C, jk~k. Considering all of the indices in (2) and (5) 
these expressions represent about 30 transformation equations which the six 
~, must satisfy. This large number of equations is rather prohibitive. 
However, a variety of solutions exist, ranging from spinors to particular 
nonlinear realizations. 4 Detailed solutions for some cases will be given in 
Sections 4-6,  and the reader should see Dalton (1979) for others. 

Since 0,~, 4: 0, expressions such as 4,'r will not be invariant. Con- 
struction of invariant forms involving ~,+ is facilitated by first constructing 
a covariant derivative D,~p which transforms like ~b (apart from the index p~ if 
we are considering a space-time group). For this purpose we consider the 
following form: 

D~,qJ = (3~, + Au) + (6) 

Notice that for simplicity, we have absorbed the usual factor of i =vc-s- 1 

4By identifying the six functions ~, with the real and imaginary parts of the complex functions 
5', of Dalton (1979) one can take advantage of this previous development to obtain several 
solutions of the thirty transformation equations. 
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and coupling constant into A,. From Appendix B we have the following 
transformation rule for the potential A,: 

Here, the quantities si  p are the elements of the four-vector representation 
generators of the Lorentz group. With our notation we have 

which with (7) leads to 

- -  - ( 8 )  

( 8 , A ~ )  = - s~~  o - -  3SO, (9) 

Factoring out the parameters to obtain (9) is possible since O~a, = 0. This, of 
course, would not be possible if we were also considering a group of local 
gauge transformations since in that case Oua i 4: 0. Equation (9) is also valid 
for an internal group if we drop the first term on the right-hand side. On 
inspection of (9), we see that A~ does not transform as a four-vector unless 

OA,, = 0. 
In the above we have started with the transformation on ~ and arrived 

at the transformation on the A.. We could have started with (9) as a more 
general Lorentz transformation on the A~ that does not change the usual 
transformation of the F (except at discontinuities in the q~). Imposing the 
commutator  relations in the action on the A, leads directly to equations (2) 
so that the latter equations are not restricted to quantum mechanics. A 
second point is that if we were considering a quantum field theory, 5 we 
would replace ~iq~ in (A.20) with (eoiqJ + ~dpi)/2. 

Even though A~ in (7) does not transform as a four-vector, this theory 
is consistent (within the exceptions discussed below) with the conventional 
Maxwell theory expressed in terms of field tensors F,~ = O~A, - O~Au. From 
(7) it is easy to show that the F~o have the following transformation 
properties: 

= (lO) 

The first two terms on the right-hand side of (10) correspond to the usual 
infinitesimal Lorentz transformation on F~. The last term vanishes if O, is 
an integrable function of space-time. If we define the current components j ,  
as follows: 

5See for instance Hammer and Good (1961). 
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then we have the following transformation properties: 

(12) 

From this we see that the components j ,  transform as four-vectors if the ~, 
are integrable functions. 

There are two points of interest here. First, if the q,, are not continuous 
(which we will show happens on the singularity string for the monopole and 
at r = 0 for a point charge), then the usual transformations of Fu,, and j ,  are 
modified. This means for instance that the expression F~,,F~,,, will not be 
invariant under a Lorentz transformation at these discontinuities. The 
second point of interest is that even where the q~, are continuous, this theory 
is more restrictive than the conventional Maxwell theory. This arises from 
the presence in (9) of the O,q~, term. Since the six q,, are limited to only those 
solutions which satisfy the 30 equations indicated in (2) and (5) the type of 
potentials which can satisfy (9) are limited and intrinsically related to the 
solutions of (2) and (5). As we will demonstrate in the following sections, 
finding a solution (i.e., explicit functions for the six q~, and four A,)  gives the 
same results obtained by solving Maxwell's equations for a particular 
source. In other words, a solution of (2), (5), and (9) specifies the source of 
Maxwell's equations. The important question which arises from this feature 
is "'Can a solution of (2), (5), and (9) be found which corresponds to the 
field of a charged particle?" We will show in Section 6 that the answer to 
this is yes! 

We remark here that the introduction of potentials which transform as 
in (9) are not new, having been introduced in earlier theories (Hammer and 
Good, 1961) of quantum electrodynamics as means of making gauge condi- 
tions, such as 0,A, = 0, Lorentz covariant. The important point to realize, 
however, is that the local action of the above Lorentz transformation on q, 
necessitates the interaction of minimal coupling, and as we shall demon- 
strate in the following sections, several solutions of (2), (5), and (9) exist in a 
given gauge, so that different solutions do not correspond merely to 
choosing different gauges. It should be remarked, however, that certain 
solutions may exist that are particular to a given gauge. 

3. CONSERVATION RULES 

Here we discuss the conservation of probability and angular momen- 
tum associated with the extended Lorentz transformations described in the 
previous section. For the conservation of probability let ~b  (qT= ++F)  
represent the probability density that is invariant for a representation of 
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SL(2. C) generated by the t,. The matrix F must be appropriately chosen for 
the representations considered. For the extended transformations of the 
previous section, we have the following relation: 

Recall that in our notation we have absorbed the usual factor of ~--1 in the 
~, and t~, and have chosen real parameters. From (13) we obtain the 
expected result that ~b is invariant if q), is pure imaginary. In other words, 
we have invariance of the probability density if the diagonal part of the 
transformation is a phase transformation. Solutions for q), which have a real 
component for one or more of the six ~, functions would not be acceptable 
in our present picture of quantum mechanics. We stress that the sure 
imaginary property of the q), must be invariant under the transformations if 
the latter are to be physical. 

To discuss the conserved angular momentum, we consider a Lagrangian 
density of the form 

= ( r  (0. + A~,)T, OuAp- OpA~,) (14) 

As indicated in this expression, we consider only 12 's for which 0,'t' and A~, 
appear only in the form (0~ + A~,)~'. This condition leads to the following 
relation: 

0~ 012 +' - (15) 

Likewise, we consider 12's for which OuA o appears only in the form O,A o - 
0pA,. This constraint may be expressed in the following way: 

012 012 
- -  - ( 1 6 )  

Equations (15) and (16) are satisfied for the standard Lagrangians of 
quantum electrodynamics. 

We consider variations of the Lagrangian for which the changes of Tj 
and A s have the following forms: 

8% = ) (17) 
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where the t i are infinitesimal parameters. With the action 

w= f ax4~ 

and (17), (18), one can easily arrive at the following form: 

D ~ t o n  

(19) 

8w=Gfdx4_ f 0[~ [(~iq/j) l oo ] 

" -V,..,.I- s,..} (20) 

where loo =--xoOp- xpOo. Using the expressions for (8?pj) and (3,Ao) given 
above, we can write (20) in the following form: 

[ Off 1 o 

"I '..' ] 
_ _  __ g s  i l o o A ~ ) - C s ~ ~  ~ + O(O.A~ s7".4. 

[ 0, o, } 
+Or, ~ (q>,+/) + 3 (O~,A---~ ( - 30q>, ) (21) 

In this expression we have collected the usual covariant angular momentum 
tensor density components in the first square bracket (--= M)') and the 
corresponding contribution from the nonlinear part in the second square 
bracket ( = Ni" ). If W is invariant under the group of transformations we 
have from Noether's theorem 

3~,(M:' + ~ )  = 0 (22) 

This expression simply means that the total covariant angular momentum 
tensor densities Me + N," are conserved. 
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From (21) consider the density N,.": 

= OAr*' O(a A.) ao,, 

In rearranging terms in the above expression we have used (15), (16), and 
the Euler-Lagrange equations. For continuous functions ~i we have from 
(23) and (16) the following conservation equation: 

o.N"=o.oo at , ,  O(OoA. ) = 0 (24) 

With this expression it follows from (22) that 3,Mr = 0. This means that the 
usual covariant angular momentum tensor density Me is conserved. 

From the same variation we have obtained two separately conserved 
quantities. However, this does not  mean that we have two separate Lorentz 
symmetry groups. The existence in this case of two conserved densities is a 
simple consequence of the fact that in the variation of the Lagrangian, the 
net expression involving the usual linear components and that involving the 
nonlinear components separately add to zero. This result is a direct conse- 
quence of our above-mentioned restrictions on ff and does not reflect 

�9 anything about the group symmetry. However, we do obtain an additional 
conserved quantity. 

With the extensive role played by the conservation condition 3,Mr = 0 
in particle interactions, the above development raises the possibility that the 
conservation condition 3N," = 0 may eventually prove likewise useful. 

Here we should contrast the above conservation rules with that consid- 
ered by Fierz (1944; see also Wentzel, 1943) for the charge monopole 
system. In this previous work the above conservation rule (22) is obtained. 
However, the conservation conditions 3,Mr = 0 and 3,N," = 0 are not  ob- 
tained. This has led to statements such as " the  monopole produces a 
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noncentral force." In this previous publication, and several other since, 6 one 
finds that the N," term does not include the second part 

of (23). This simply means that the Lagrangian used had no dependence on 
the field tensors F,,,. For the standard Lagrangian forms in QED this 
corresponds to leaving out the F,,,F,. term. In contrast, the conservation 
rules discussed above depend on including in t~ all fields that are dynami- 
cally involved in the system. One might argue that the contribution to the 
angular momentum arising from including in 12 the F,,, dependence is small 
and this can be ignored. This argument is not valid, however, because the 
contribution to the continuity equation ~J~ = 0 of this term is exactly equal 
in magnitude but opposite in sign to that of the first term in N:'. In 
summary, the previously derived angular momentum conservation rules for 
the charge monopole system were derived from an incomplete Lagrangian in 
which the electromagnetic field of the monopole was considered external. 
The conservation rules given above are derived from a Lagrangian repre- 
senting a complete, or closed system. It is for such systems that conservation 
of angular momentum has been an important analytic tool. It is by now 
traditional (Wu and Yang, 1976; Yang, 1977; Boulware et al., 1976) to 
diagonalize the Jz for the incomplete Lagrangian and arrive at quantization 
rules involving the charge and monopole strengths. However, since the 
operator involved is not a conserved operator for the complete system one 
should question the physical validity of these results. As a final remark, we 
point out that the above conservation theorems can be derived in the 
framework of classical mechanics if the Lagrangian includes (as it usually 
does) terms that depend on the electromagnetic field tensors. 

4. VECTOR BASIS 

To describe specific solutions we find it convenient to use the vector 
basis of Dalton (1979) and to use ~i(Si) for the rotation subgroup and ~,(g,) 
for the pure Lorentz transformation. With this notation the indices range 
from 1 to 3. With the structure constants of Dalton (1979) expression (2) 

6See Wu and Yang ( 1976} and Yang (1977). A more complete list of references can be found in 
Boulware et al. (1976). 
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gives the following equations: 

The expression in (9) gives the following equations: 

( ~A4) : iAi-O4~i 

(~,Aj) : -~A~,j-0j6,  

( ~ i a 4 )  = _ 0 4 ~  i 

We have from (5) the relations 

(8 , (8~Z) ) - (S j (8 ,Z) )  = - e,~(8,.Z) 

(8 , (4z ) )  - (  s,(8,z)) : -~ , j , (~ ,z)  

(s,(sjz))-(~(~,z)): + ~,,k(8~Z) 
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(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

where Z represents any one of the q~, or ~,. With this basis, the infinitesimal 
transformation on Z is expressed by 

z ' :  z +  ~,(8,z)+ ,,(~,z) (35) 

where both o~ and v are real. The reader should notice that the usual factor 
"i = f z 1  has been absorbed into the (SiZ) terms (see Appendix A for some 
discussion of this degree of freedom in choosing a basis). If the more 
traditional basis is used (see footnote 12 of Dalton, 1979), the structure 
constants above will be modified by a factor of ~ - 1 .  

5. MONOPOLE POTENTIAL FROM SU(2) 

One of the first published examples of a diagonal nonlinear realization 
was given in context of a charge-monopole system (Poincar6, 1896). In 1896 
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Poincar~, in an attempt to explain an experiment of Birkeland (1896), 
considered the Lorentz force equations with the magnetic field of a mono- 
pole. From the first integrals of these equations he obtained an angular 
momentum, which contained in addition to the usual orbital form, a 
nonconstant term. After the (1931) quantum mechanical study of the 
monopole by Dirac (1931, 1948) Fierz (1944) started with the classical force 
equations with the angular momentum operators discussed by Poincar+ (no 
reference to Poincar~ was given) and then considered the quantum mechani- 
cal version of these operators. The nonconstant term generated a diagonal 
nonlinear transformation of 0(3) on the wave function. Fierz showed that 
by diagonalizing the angular momentum (~ ) ,  he could obtain a charge- 
monopole quantization condition. This approach to charge quantization has 
since been repeated by many authors (Wu and Yang, 1976; Yang, 1977; 
Boulware et al., 1976). 

In this section we show that the magnetic monopole potential is a direct 
solution of the above nonlinear realizations for the SU(2) or 0(3) subgroup. 
We also discuss the conserved angular momentum generators for a closed 
versus open system and the implications for the charge quantization prob- 
lem. 

To solve for q), we consider the following form: 

r = ~ % , x ~ A ,  + F, (36) 

where a, A k, and ~ are to be determined. In our notation we have 
(6,x/) = - eijkx k. If we use (36) in (25), we will obtain expressions involving 
the quantities (8,A j). For these, we use the expression (30). This introduces 
the derivatives ajq), which with (36) introduces the derivatives O~Aj into the 
expression. The net result is the following set of differential equations 
involving the x~, A j, F,, and a: 

A ( a + a 2 )( x jA ,  - x iAj ) + eijeF ~ - (  eij,,x,, )ek,,,x,~[ a-B k , , -  a( 8ka )A,, ] 

+ F,] (37) 

We have used the following identity to reduce to the above expression: 

( ~je,.~,~, - ~,ek ~jo~ ) x  ex  ~ = - ( ~j,~x e )(  ~,o, ,x~ ) (38) 

We consider the solution of (37) for which a -- - 1, and F~ = Cx~, where C 
is a function of x = ( x , x , )  ~/2 so that ( (~C)=  0. In this case (37) reduces to 
the following expression: 

ek,~,x~kA,, = C (39) 
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To solve (39) we consider the following form for A,,: 

A,, : g(x . n ,  x 2 )enej)f efl j (40) 

where nj is an arbitrary unit vector with 0jn k = 0. Using (40) in (39) gives 
the following differential equation for g: 

g'[(x- n) 2 -  x z] + 2g(x. n ) : C (  x ) (41) 

where g ' =  a g / ~ ( x ,  n). This equation has the following solutions: 

C(r) 
g• = [(x.n)-+ x] (42) 

where C ( x )  is still arbitrary. To determine C ( x ) ,  we notice from (40) that 
A.x  = 0. If the form in (40) is to be covariant we must also have x ' . A ' =  0. 
Imposing this covariant condition gives 

x ' . A ' =  0 = x . A +  A , ( a x i ) + ( a A i ) x  i (43) 

Using ( 6 A  ) = A', - A i = e~j( 6 j A ,  ), and ( 6 x i )  = aj(ajx,) we obtain 

x,ai~, = 0 (44) 

a little arithmetic we arrive at the following From these equations and 
expression: 

C ' x  + C = 0 (45) 

where C ' =  - -  d C / d x .  This equation has the solution C =  I ~ / x ,  where ~ is a 
constant. Combining the above results we have the following solutions: 

# e i J k x j n k  (46) 
A ; - - x [ ( x . n ) •  

+ P, x i  
COl ~- = - e i i k x j A  ~ + - -  (47) 

x 

The vector potentials given in (46) have the form of the Dirac magnetic 
monopole potential. In comparison with the work by Dirac we see that the 
unit vector n lies along the Dirac string. If x is parallel to n, one or the other 
of the above solutions is singular. The linear combinations A + -+ A 7 of (47) 
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are also solutions. Both of these solutions have been used in previous 
applications. 7 

The important difference between the above derivation and previous 
work is that here solutions are obtained by solving equations (25) and (30) 
and not Maxwell's equations. In summary, the diagonal nonlinear realiza- 
tions of the rotation group generates (as one solution) the magnetic mono- 
pole field. 

In the above solution let us consider the nonlinear conserved angular 
momentum density N, ~ discussed in Section 3. We have 

N~" O(O~A,) q~j - eiekXeAk + --X 

0(0~,A,) 
(48) 

The second term in this expression is what is left out when one uses a 
Lagrangian that represents only part of the system. To make this more clear, 
consider the usual Lagrangian density of QED: 

We obtain the result 

U,": E, kXeAk 

(49) 

The second expression in (50) would not be included if the F~,,F~,,, term was 
left out of the Lagrangian. If one chooses to approach charge quantization 
by diagonalizing an angular momentum operator, it would seem logical to 
choose the above conserved operator N, ~'. 

6. C OULOMB POTENTIAL AND T H E  CHARGE 
REALIZATION 

We now consider a solution of (25)-(34) that gives rise to the Coulomb 
potential for a point charge. We emphasize that several of the solutions in 

7See Barut and Bornzin ( 1971). See also Schwinger (1966). Some problems with this article have 
been clarified in Wentzel (1966). 
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Dalton (1979) satisfy the equations of Section 4, but these solutions do not 
generate the Coulomb potential of a point charge. For this solution we set 
Og=0 for the angular momentum generators. This means that the ~ 
describing the nonlinear pure Lorentz part must satisfy 

(~i~j)-- ( ~ i )  = 0 (51) 

(6,~j) = - eijk~ k (52) 

From (51) we see that the antisymmetric part of (6~j )  must be zero. 
Limiting the ( ~ j )  to functions of the q~i only, we can express them in the 
following way: 

(53) 

where F and h are functions to be determined. With this expression, 
equations (25)-(27) are satisfied. There are several different solutions of F 
and h (i.e., different realizations) which will solve (32)-(34). Here, we 
discuss a particular solution in which the function ~2 = ~ is left invariant. 
Restricting F and h to be functions only of this invariant quantity we can 
use (53) in (34) to obtain the following conditions: 

F =  -+ ~, h = ~ 1 /~  (54) 

where ~ is one of the roots of +2. With this solution we have the following 
form for (6,~j): 

(55) 

To better see the nonlinear nature of this transformation, we can recall the 
definition of (6,~j) and consider the finite integral of (55) for a given 
parameter v~ say. We have 

~'l=( ~,coshv,+_~sinhvl)/Q, ~'k=~k/Q, k = 2 , 3  (56) 

where Q is given by 

Q = ( ~ cosh i,, -+ ~, sinh u, ) / (57) 

This particular realization differs topologically from those corresponding to 
the sterographic projections [or 0(3, 1)/O(3) coset realizations (Hopkinson 
and Reya, 1972)]. In the above case the quantity ~2 ='~i~i is invariant 
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whereas in the latter the inner product summed over three dimensions is not 
invariant. The above particular realization corresponds to the T C  • T C  
realization of Dalton (1979). The particular transformation pattern ex- 
hibited by it has been studied previously by several authors for other groups 
(Philips and Wigner, 1968; Melvin, 1962, 1963; Takabayasi,  1966). A 
detailed study has been given by Philips and Wigner (1968) for the de Sitter 
groups, a discussion in the context of the positive energy problem. To better 
understand the above-mentioned difference between these realizations and 
the sterographic projections (or coset realizations) the reader should con- 
trast the realizations of Philips and Wigner with the conventional de Sitter 
realizations described in several classical studies (see for instance the study 
by Gfirsey, 1964). 

We now consider an explicit space-time functional form for the func- 
tions ~, which transform as described above. Let )~ and x ,  represent 
coordinates of two points x and y in Minkowski space and define r. = x ,  - ~)~. 
We try a solution in which the g~j are proportional to ri' 

= z(  r, r4)'7/ (58) 

where Z is to be determined. 
Since we know that ( ~ i ~ j ) = ( 6 i Z ) r j + Z ( ~ , p ) )  and we know (6,r~) = 

- i r 4 6 i j ,  ( i ~ r 4 ) = i r  i, we can use (58) and (55) and linear independence to 
obtain the following two conditions: 

Z[ir.-+r] =0  (59) 

(6,Z) = Z r , / r  (60) 

From (59) we see that either Z = 0 or ir 4 • r = 0. If we choose to impose this 
explicit condition on the r,, we have r~r~ = 0 and r 4 = i?tr, where in our 
notation we have ?t = + 1 for retarded and )~ = - 1 for advanced manifolds. 
We thus see that the two signs in (59) simply correspond to these two 
different manifolds. On these manifold we can use ir 4 = + r to eliminate the 
explicit dependence of Z on r 4. Then using ( 8 , Z )  = ( O Z / O r ) ( 6 i r )  in (60) we 
obtain the following differential equation: 

OZ - Z  
- ( 6 1 )  

Or r 

which has the simple solution 

Z = q / r  (62) 
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where q is some constant. With (62) we have for ~i the solutions 

co, = q_~r~ . r . r . = 0 (63) 

In the above we have considered an explicit solution of the ~i that did not 
have any direct dependence on the potentials A~,, so that equations (28)-(31) 
were not involved. To obtain the Coulomb potential we now consider the 
transverse gauge 3,A,  = 0 and impose this as a Lorentz covariant gauge 
condition. Using (28)-(31) this covariance requirement (i.e., 3{A', = 3,A,  = O) 
is satisfied provided the following equations hold: 

V2@i = - - i [34A ,+O,  A4] (64) 

V 2~ i = O, OiA i = 0 (65) 

These equations are not relations which determine the ~, or A , ,  but rather, 
just conditions relating the two in the transverse gauge. From (64) and 
3,A i = 0 we can obtain the following relation for A 4" 

V2(3,~, + iA.) = 0 (66) 

in the regions where the as and A, are continuous (to obtain this relation one 
must interchange some partial derivatives). One solution of (66) is 

A 4 = iO,~ i (67) 

If we use the condition r,r, = 0, we have the relation 

3~,r~ = 8o~ , + (68) 
r - -  Xr-/3 

where r 4 = iXr,  ~4 = i, and ~ = ( 1 / c ) d y / d t  represents the velocity at point 
y. With this relation we have 

a , ( r j / r )  6iJ Xfljrir - fir J (69) 

- - ~ - q  r 2 ( r _  Xr.l~) 

Using (67) with the solution in (63), we obtain the relation 

A4 =_ 2iq (70) 
r 
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which is just the Coulomb potential in the transverse gauge. Since ~, must 
be imaginary (recall the conservation of probability) we notice from (63) 
that q must be imaginary. This leads to a real A 4 in (70). This is expected 
since we recall from Section 2 that we have absorbed the usual factor of i 
into the A, when we constructed the covariant derivative D ~  = (a, + A~)~b. 
We emphasize that the relation (70) was derived for arbitrary velocities ~ of 
the point y. With the above result we see that the constant in the Coulomb 
potential represents the magnitude of the diagonal nonlinear pure Lorentz 
transformations. This gives an interesting picture of charge as the nonlinear 
counterpart of intrinsic spin in the sense that both are related to transforma- 
tion generators of our space-time symmetry. We strongly emphasize, how- 
ever, that the Coulomb potential follows from the particular realizations 
given above, and not from some of the other realizations discussed in 
Dalton (1979). In this picture, to say that a particle has an electric charge 
means that there exists a long-range distribution described by the ~,i = q r i / r  
(centered at the point y) ,  which represent a particular nonlinear transforma- 
tions of the wave function and potentials. As a last remark, the fact that the 
~i do not fall off (i.e., ~2 = q2) with increasing r is a significant point. This is 
especially interesting in connection with the occurrence of the six q~, together 
with equations (25)-(27) in a derivation of the classical Lorentz (Dalton, to 
be published) force directly from nonlinear realizations of the Lorentz 
group acting on the four-velocities of a particle. 

7. OTHER SOLUTIONS 

Here we briefly point out that the 30 equations discussed in Section 4 
have other solutions that may be of physical interest. For this, we can use 
some previously published work. Let S represent a three-dimensional vector 
of Dalton (1979), and let S* represent its complex conjugate. If we write q~, 
and ~, in the following way: 

eOi= Si - S* (71) 

~, = - i (S ,  + S,*) (72) 

we see that both q'i and ~i will be pure imaginary. This condition is required 
by probability conservation. Now, one may show that with (71) and (72), 
most of the nonlinear realizations described in Dalton (1979) will satisfy the 
equations of Section 4. Among the variety of solutions described in Dalton 
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(1979), one finds a spinor (the TE • ZA realization). For it, we have 

(8iSj) = ( • $48,j - e, jkS,} /2  (73) 

( ~iS; ) = ( -  i )( SiSj ) (74) 

where $4 = (D 2 - $2) ~/2 and D is some invariant. 
This spinor is unusual in that the indices on the components S k are the 

three Cartesian indices of space-time, and not indices of an internal space. 
The fact that S is a spinor follows from evaluating, from (73), the 0(3) 
Casimir invariant: 

- = ( 7 5 )  

One may well ask how such a spinor could influence the interaction 
potential. Because of the nature of this spinor transformation it is difficult 
to obtain explicit solutions as in Section 6. One possibility is to consider an 
invariant Lagrangian for this spinor and to then solve the field equations to 
get an explicit space-time dependence. One possible invariant Lagrangian 
density for this realization is 

D 2 -  S 2 
(76) 

Then, by choosing a specific gauge condition such a s  A 4 = i0~+, given in 
Section 6, one could calculate A 4. It should be clear then that the functional 
form for A 4 will probably differ from the 1/r Coulomb potential. The 
possibility that this spinor could be related to a neutrino, or to some other 
basic building block of matter, is an intriguing idea. 

This example illustrates the potential richness of this approach to 
physical interactions. The fact that the 1/r Coulomb potential has been 
derived from one of these realizations strongly encourages investigation of 
these other nonlinear realizations. We should add that solutions other than 
those presented here and in Dalton (1979) have been found, and a paper  
describing them is in progress. 
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APPENDIX A: DERIVATION OF COMMUTATOR 
RELATIONS 

The commutator  relations of a group of transformations are obtained 
by requiring that the transformations corresponding to the sequence 
g ( a ) g ( f l ) g ( a -  1)g(/3- ~) is itself an element of the transformation group, 
(i.e,, closure). The commutator relations most often encountered are [t,, t;] 
= Cukt k, where the t k generate a matrix (linear) representation and the Cuk 
are the group structure constants. This form, however, is not valid for more 
general transformations. Using our notation, we briefly outline the deriva- 
tion for the commutator  relations for an arbitrary transformation (linear or 
nonlinear), and from it obtain the form appropriate to the particular 
transformations studied in this paper. The transformations are defined on 
an arbitrary variable ~, which could be either an operator (e.g., as occurs in 
quantum field theory), or a c-number function. 

Under a given group element g(a)  the variable ~ changes to ~' as 
follows: 

g ( a ) :  ~-~ ~ ' =  r ( g ( a ) , ~ )  (A.1) 

where F(g(0), "q)= ~. We consider an infinitesimal transformation 

, ' = ~ + a ,  O F ( g ( ~ ) ' ' )  +O(a  2) (A.2) 

For convenience we use the notation (8,~) for the coefficient of a, in (A.2). 
This function, often called a Killing vector, is defined as follows: 

(871)- OF(g(fl),~t)aB, ~ = o ( A . 3 )  

The parenthesis used in this definition helps avoid confusion in composite 
expressions. If 77 can be written in the form 71 = VW + X where V, W, and X 
are either operators, or c-number functions, then one can show from (A.2) 
the following result: 

(8, . )  = ( 8 , v ) w +  v(8,w)+(8,x) 

This property will be used in the following derivation. As a cautionary 
remark one should notice that if ~ is a function of noncommuting operators 
V,~, one generally cannot write ( 8 ~ )  = (O~/~V~)(Sy~). However, this proce- 
dure is valid if ~ is composed of c-number functions, or in special cases that 
do not involve an exchange of noncommuting operators. 
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For an arbitrary product g(a)g( f l )  we have the following relation 
through first order in a and fl: 

F ( g ( a ) g ( f l ) , n )  = n + B,(8/q) + a,(8,n) + a,flj (8,(Sin)) (A.4) 

Using this expression in the transformation corresponding to g(a)g(f l )  
g ( a -  i )g(f l-  l ), and keeping only terms of order a and fl gives the following 
result: 

F( g( a)g( fl )g( a ' )g( f l -  ' ), v/ ) : v/ + a,fl;[ ( S,( 3;, ) ) - ( 3,( 8, ,  )) ] 

(A.5) 

If we impose closure, this transformation must be equivalent to F(g()'),  V/) 
where the parameter )' is a function of a and/3. Using the expansion 

g(g( ) ' ) ,  V/) = V/+ ),,(6iv/) (A.6) 

together with (A.5) we have 

7i(6iv / ) :a i f l j [ (6  (Sjv/))+(6j(6iv/))] (A.7) 

If we choose the solution 

)'k = a,flj Cuk (A.8) 

where C,j k are constants (the structure constant) we have 

(8,(Sjv/))--(8j(8iv/)) = C~j~(8kv/) (a.9)  

The structure constants C, jk = -- C,k must also satisfy the Jacobi identity 

CukC k .... + CjekCk,,, + C~,kCkj,, , = 0 (A.10) 

which follows from the associative property of the group multiplication. If 
C,j k satisfies (A.10) then )tC, j k will also satisfy this equation. This freedom 
can be (and often is) used to choose different sets of parameters and /o r  
functions (6,V/) which satisfy (A.7)-(A.10). All such bases are equivalent, 
but often a particular one may be more convenient for a given problem. 

For the particular applications in this paper, we are considering trans- 
formations of an N-dimensional column matrix q~. We have 

~b'(x') = ~b(x)+ a,(6?,b) (A. 11) 
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where 

(6,+) = - & q ,  (A.12) 

Using this expression in (A.9) produces the following equation: 

= (A.13) 

Here [S,, $t] = s,s~ - SiS, is the usual matrix commutator. If the S, are inert 
under the group action [i.e., if (8 ,$ / )=0] ,  equation (A.13) reduces to the 
ordinary matrix commutator relation for representations. 

To solve (A.I 3) one can write it as a set of coupled nonlinear equations 
on the matrix elements of S,. Another but related approach is to write S, in 
the form 

Si= - g i c M c ,  I<~C<<-N 2 (A.14) 

where the M c are N 2 linearly independent matrices that are constant under 
the group action, i.e., ( 6 , M e ) = 0 .  Using (A.14) in (A.13) we arrive at the 
following relation: 

(8 ,g ,E) -  (Big, E ) -  = C,,k (A.15) 

where Vco E is given by 

[Me,  MD] -- McMD - MDM c = VcDEM E (A.16) 

We can write the matrix commutator [M c, MD] as in (A.16) since the N 2 

linearly independent matrices M E form a basis for expansion of any N • N 
matrix. In most previous work, the solutions of (A.13) are limited by 
truncating the expansion in (A. 14) to a subset of matrices which generate an 
N 2 matrix representation of the group. Equation (A.16) still holds for this 
subset. If these generator matrices are chosen such that V,j k = C,j k we have 
the following relation: 

..... = c,j g.. (A.17) 

where all indices in this expression range over the index set of group 
parameters. Solutions of (A.17) have been published for internal groups 
(Weinberg, 1968; Coleman et al., 1969; Callan et al., 1970; Joseph and 
Solomon, 1970; Salam and Strathdee, 1969: Julia and Luciani, 1980) as well 
as the Lorentz group (Dalton, 1980). In the most common special case of 
(A.17) the g,j = - 8ij for a given subgroup H of the group G. The remaining 
g,j are functions of the coset parameters G / H .  
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For  the work in this paper  we consider the special case of (A.14) for 
which S, has the form 

s , :  - + ,,, It,, ,,] :C,,ktk (A.18) 

where the t, are the constant  [ (8 , t j )=  0] generators  of an N-dimensional  
representat ion,  and 1 is the N • N unit matrix. Since [1, t j ] = 0  we have 
f rom (A.13) the relation 

(8 , ,~ j ) -  (rj,~,) = C, jkq> k (A.19) 

In (A.19) we have a function ,~, for each pa ramete r  a,. For the Lorentz 
group we are considering six functions ~,. With (A.18), equat ion (A.11) 
takes on the following form: 

+'( x ' )  = +( x ) + a,ePil~( x ) - a , t i ~ (  x ) (A.20) 

so that with ~, v a 0 we have s imultaneous with the usual matrix t ransforma-  
tion, a local (if ~,~,~ v ~ 0) diagonal  realization of the group. 

APPENDIX B: C O V A R I A N T  D E R I V A T I V E  

To construct  a covariant  derivative appropr ia te  to the t ransformat ions  
we are studying, we consider the following form: 

D'I" = e~(a~ + A , ) *  (B.1) 

Here  e~, is a componen t  of some four-vector  for which the e u are linearly 
independent  of each other. This use of  e~, is not necessary, but it makes  it 
easier to include the four-vector  t ransformat ion  associated with the index ~. 
The  t ransformat ion  of A~, in (B.1) is obta ined as in local gauge theory from 
the condit ion that D ' t '  t ransform under the group like ,t', that is 

( D e e )  ' =  UD,t" (B.2) 

where ' t " =  U' t '  and U is obta ined from (A.17): 

U =  1 § ~i( ,~,1-  4 )  (B.3) 
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t With D ' =  e'~,(a~ + A~,) we have from (B.2) the relation 

=eu~uU*-[e~,O..U]U 'U*+Ue~,A~,U-'U't" (B.4) 

where the second line is a rearrangement of the right-hand side. Since euO~, is 
a Lorentz invariant, the first terms on each side cancel, giving 

e;,A'~Uq t = U~uAuU- Iuqz - [~.~,. U] U IUgff 

e'.A'~=Ue.A.U '-(e~,O~,U)U-' 

e'~A'~,=e.[UA,,U-'-(~,U)U-'] (s.5) 

From the four-vector property of e. we have 

e, = ( A - ~  , ),,we. (B.6) 

where the A~,,. are elements of a four-vector transformation. Using this in 
(B.5) and the linear independence of the e'., we obtain the relation 

A'u=A,'[UA,,U ' - ( O , U ) U - ' ]  (B.7) 

Apart from the factor of A,,, t, equation (B.7) has the same form obtained 
for transformations of Yang-Mills gauge potentials. There is, however, an 
important difference! In nonlinear realizations, the space-time dependence 
of U arises through the generators (here via the q,,, or gu functions), whereas 
in gauge theory it enters through the group parameters. Since the functions 
0~ and gi: entering the generators are not inert under the group action, they 
cannot be incorporated with the parameters to reduce the nonlinear realiza- 
tions to a gauge transformation (an exception to this is the case where the 
group is Abelian). 

Using the infinitesimal form (B.3), equation (B.7) reduces to the 
equation 

A , ,4 aj[ s~"A. + ~ @ k ,a j (B.8) 

Here the s,"" are the elements of the infinitesimal four-vector representation 
generators in a given basis; 

A,,, = 8~ - a,s~" (B.9) 



Electrodynamics 789 

If we define the quantity (8,A~,) as follows: 

(SiA~,) _ 0A' ,~ 
= ~ i  :0  (B.IO) 

and make a Taylor's expansion for A; on the parameter a, in (B.8) we 
obtain the relation 

( 8 , A , )  = -s,~"A,,-O,q,, (B.II)  

From (B.8) or (B.11) we see that the diagonal realizations cause a modifica- 
tion of lhe usual four-vector transformation properties of A~, by the presence 
of a derivative term ~,~.  This term is important in two ways. First, only 
solutions for A, which transform as in (B.8) will be allowed. Second. the 
term O,q,~ will contribute to the conserved total angular momentum (see 
Section 3 for discussion). 
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